745 research outputs found

    An outburst scenario for the X-ray spectral variability in 3C 111

    Get PDF
    We present a combined Suzaku and Swift BAT broad-band E=0.6-200keV spectral analysis of three 3C 111 observations obtained in 2010. The data are well described with an absorbed power-law continuum and a weak (R~0.2) cold reflection component from distant material. We constrain the continuum cutoff at E_c~150-200keV, which is in accordance with X-ray Comptonization corona models and supports claims that the jet emission is only dominant at much higher energies. Fe XXVI Ly\alpha emission and absorption lines are also present in the first and second observations, respectively. The modelling and interpretation of the emission line is complex and we explore three possibilities. If originating from ionized disc reflection, this should be emitted at r_in> 50r_g or, in the lamp-post configuration, the illuminating source should be at a height of h> 30r_g over the black hole. Alternatively, the line could be modeled with a hot collisionally ionized plasma with temperature kT = 22.0^{+6.1}_{-3.2} keV or a photo-ionized plasma with log\xi=4.52^{+0.10}_{-0.16} erg s^{-1} cm and column density N_H > 3x10^23 cm^{-2}. However, the first and second scenarios are less favored on statistical and physical grounds, respectively. The blue-shifted absorption line in the second observation can be modelled as an ultra-fast outflow (UFO) with ionization parameter log\xi=4.47^{+0.76}_{-0.04} erg s^{-1} cm, column density N_H=(5.3^{+1.8}_{-1.3})x 10^{22} cm^{-2} and outflow velocity v_out = 0.104+/-0.006 c. Interestingly, the parameters of the photo-ionized emission model remarkably match those of the absorbing UFO. We suggest an outburst scenario in which an accretion disc wind, initially lying out of the line of sight and observed in emission, then crosses our view to the source and it is observed in absorption as a mildly-relativistic UFO.Comment: Accepted for publication in MNARS on July 1st 201

    From radio-quiet to radio-silent: low luminosity Seyfert radio cores

    Full text link
    A strong effort has been devoted to understand the physical origin of radio emission from low-luminosity AGN (LLAGN), but a comprehensive picture is still missing. We used high-resolution (≀\le1 arcsec), multi-frequency (1.5, 5.5, 9 and 14 GHz) NSF's Karl G. Jansky Very Large Array (VLA) observations to characterise the state of the nuclear region of ten Seyfert nuclei, which are the faintest members of a complete, distance-limited sample of 28 sources. With the sensitivity and resolution guaranteed by the VLA-A configuration, we measured radio emission for six sources (NGC3185, NGC3941, NGC4477, NGC4639, NGC4698 and NGC4725), while for the remaining four (NGC0676, NGC1058, NGC2685 and NGC3486) we put upper limits at tens uJy/beam level, below the previous 0.12 mJy/beam level of Ho&Ulvestad (2001), corresponding to luminosities down to L≀1019\le10^{19} W/Hz at 1.5 GHz for the highest RMS observation. Two sources, NGC4639 and NGC4698, exhibit spectral slopes compatible with inverted spectra (α≀\alpha\le0, SΜ ∝ Μ−αS_{\nu}\,\propto\,{\nu}^{-\alpha}), hint for radio emission from an optically-thick core, while NGC4477 exhibits a steep (+0.52±\pm0.09) slope. The detected sources are mainly compact on scales ≀\le arcseconds, predominantly unresolved, except NGC3185 and NGC3941, in which the resolved radio emission could be associated to star-formation processes. A significant X-ray - radio luminosities correlation is extended down to very low luminosities, with slope consistent with inefficient accretion, expected at such low Eddington ratios. Such sources will be one of the dominant Square Kilometre Array (SKA) population, allowing a deeper understanding of the physics underlying such faint AGN.Comment: accepted for publication on MNRAS (19 pages, 26 figures

    Different realizations of tomographic principle in quantum state measurement

    Get PDF
    We establish a general principle for the tomographic approach to quantum state reconstruction, till now based on a simple rotation transformation in the phase space, which allows us to consider other types of transformations. Then, we will present different realizations of the principle in specific examples.Comment: 17 pages, Latex file, no figures, accepted by J. of Mod. Op

    Quantum theory of a polarization phase-gate in an atomic tripod configuration

    Full text link
    We present the quantum theory of a polarization phase-gate that can be realized in a sample of ultracold rubidium atoms driven into a tripod configuration. The main advantages of this scheme are in its relative simplicity and inherent symmetry. It is shown that the conditional phase shifts of order π\pi can be attained.Comment: X International Conference on Quantum Optics, Minsk, Belaru
    • 

    corecore